Continuity and limit Math 280

Spring 2011

Continuity and limit

Continuity

For $f : \mathbb{R} \to \mathbb{R}$

- "unbroken curve"
- $\lim_{x \to x_0} f(x)$ exists and equal to $f(x_0)$

For $f: \mathbb{R}^2 \to \mathbb{R}$

- "unbroken surface"
- $\lim_{(x,y) \to (x_0,y_0)} f(x,y)$ exists and equal to $f(x_0,y_0)$

For $f : \mathbb{R}^3 \to \mathbb{R}$

- "unbroken ???"
- $\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z)$ exists and equal to $f(x_0,y_0,z_0)$

Need precise definition of limit

Distinguish between

- What is it?
- How do we compute/evaluate it?

Example: Evaluate $\lim_{x \to 0} \frac{\sin(x)}{x}$

- conjecture based on table of values
- compute using L'Hopital's rule

What does it mean to say
$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1?$$

Continuity and limit

Definition: *L* is the limit of *f* at x_0 if for every **target** centered at *L*, there is a **successful launch pad** centered at x_0 .

Target: an open interval centered at L

$$\downarrow$$
 \downarrow
 $L - \epsilon$
 $L + \epsilon$
 $f(x)$

Launch pad: an open interval centered at x_0 with x_0 taken out

$$x_0 - \delta$$
 x_0 $x_0 + \delta$

Successful launch pad: every input x in the launch pad has an output f(x) in the target

A precise definition

Continuity and limit

Traditional phrasing of a precise definition

Brief	Verbose	Traditional
For each target centered at <i>L</i>	For each open interval centered at <i>L</i>	For each $\epsilon > 0$
there is a launch pad centered at x_0	there is an open interval centered at x_0 with x_0 removed	there is a corresponding number $\delta > 0$
that is successful.	such that x in the launch pad has $f(x)$ in the target.	such that $0 < x - x_0 < \delta$ implies $ f(x) - L < \epsilon$.

Definition: *L* is the limit of *f* at x_0 if for every $\epsilon > 0$, there is a corresponding $\delta > 0$ such that $0 < |x - x_0| < \delta$ implies $|f(x) - L| < \epsilon$.

A precise definition

Definition: *L* is the limit of *f* at x_0 if for every $\epsilon > 0$, there is a corresponding $\delta > 0$ such that $0 < |x - x_0| < \delta$ implies $|f(x) - L| < \epsilon$.

Continuity and limit

Limits for $f : \mathbb{R}^2 \to \mathbb{R}$

Definition: *L* is the limit of *f* at (x_0, y_0) if for every **target** centered at *L*, there is a **successful launch pad** centered at (x_0, y_0) .

Target: an open interval centered at L

Launch pad: an open disk centered at (x_0, y_0) with (x_0, y_0) taken out

Successful launch pad: every input (x, y) in the launch pad has an output f(x, y) in the target

Continuity and limit

Definition: *L* is the limit of *f* at (x_0, y_0) if for every target centered at *L*, there is a successful launch pad centered at (x_0, y_0) .

Limits for $f : \mathbb{R}^2 \to \mathbb{R}$

Definition: *L* is the limit of *f* at (x_0, y_0) if for every target centered at *L*, there is a successful launch pad centered at (x_0, y_0) .

Continuity and limit